\qquad Exam Seat No: \qquad

C. U. SHAH UNIVERSITY Summer Examination-2022

Subject Name: Mathematical Methods - I

Subject Code: 5SC03MAM1
Semester: 3

Date: 22/04/2022

Branch: M.Sc. (Mathematics)
Time: 02:30 To 05:30 Marks: 70

Instructions:

(1) Use of Programmable calculator and any other electronic instrument is prohibited.
(2) Instructions written on main answer book are strictly to be obeyed.
(3) Draw neat diagrams and figures (if necessary) at right places.
(4) Assume suitable data if needed.

SECTION - I

Q-1 Attempt the Following questions

(a) State first shifting theorem for Laplace transforms.
(b) Find $L\left\{\frac{1}{\sqrt{\pi t}}\right\}$. 02
(c) Define: Direct delta function.
(d)
$L^{-1}\left\{\frac{\bar{f}(s)}{s}\right\}=$
(e)

$$
Z\left(e^{a n}\right)=
$$

\qquad

Attempt all questions

(a) Prove that $Z(\cosh n \theta)=\frac{z^{2}+2 z \cosh \theta}{\left(z^{2}-2 z \cosh \theta+1\right)}$.
(b) If $L\{f(t)\}=\bar{f}(s)$ then prove that $L\left\{t^{n} f(t)\right\}=(-1)^{n} \frac{d^{n}}{d x^{n}}[\bar{f}(s)]$. 05
(c) Find Laplace transform of the periodic function $f(t)$ with period $\frac{2 \pi}{\omega}$.

Where, $f(t)=\left\{\begin{array}{c}\sin \omega t ; 0<t<\frac{\pi}{\omega} \\ 0 ; \frac{\pi}{\omega}<t<\frac{2 \pi}{\omega}\end{array}\right.$
OR
Q-2 Attempt all questions
(a) Find the Z transform and region of convergence of05
$u(n)=\left\{\begin{array}{l}4^{n} \text { for } n<0 \\ 2^{n} \text { for } n \geq 0\end{array}\right.$.
(b) Find $Z^{-1}\left\{\frac{2\left(z^{2}-5 z+6.5\right)}{(z-2)(z-3)^{2}}\right\}, 2<|z|<3$.
(c) Find $L\left\{\frac{1-\cos 2 t}{t}\right\}$.

Q-3 Attempt all questions

(a) Prove that $L\{\operatorname{erf}(\sqrt{x})\}=\frac{1}{s \sqrt{s+1}}$.
(b) If $f(t)$ is periodic function with period T then prove that
$L\{f(t)\}=\frac{1}{1-e^{-s T}} \int_{0}^{T} e^{-s t} f(t) d t$.
(c) If $L^{-1}\left\{\frac{s}{\left(s^{2}+1\right)^{2}}\right\}=\frac{1}{2} t \sin t$, then find $L^{-1}\left\{\frac{32 s}{\left(16 s^{2}+1\right)^{2}}\right\}$.

OR

Q-3 Attempt the Following questions

(a) State and prove Convolution theorem for Laplace transform.
(b) Find $L\left\{\int_{0}^{t} \frac{e^{-t} \sin t}{t} d t\right\}$.
(c) If $\left\{u_{n}\right\}$ be any discrete sequence and $Z\left\{u_{n}\right\}=U(z)$ then prove that (i) $Z\left(a^{-n} u_{n}\right)=U(a z)$ and (ii) $Z\left(a^{n} u_{n}\right)=U\left(\frac{z}{a}\right)$.

SECTION - II

Q-4 Attempt the Following questions

(a) Define: Z-transform
(b) Check whether the function $f(x)=\left\{\begin{array}{ll}0 ; & -2<x<-1 \\ k ; & -1<x<1 \\ 0 ; & 1<x<2\end{array}\right.$ is even or odd?
(c) If $F(\lambda)$ is Fourier transform of $f(x)$ then prove that

$$
\mathrm{F}\{\mathrm{f}(\mathrm{x}) \cos \mathrm{ax}\}=\frac{1}{2}\{\mathrm{~F}(\lambda-\mathrm{a})+\mathrm{F}(\lambda+\mathrm{a})\}
$$

(d) Define: Inverse Fourier transform.

Q-5 Attempt all questions

(a) State and prove Parseval's formula for Fourier series.
(b) If $F(\lambda)$ is Fourier transform of $f(x)$ then prove that

$$
F\{f(a x)\}=\frac{1}{a} F\left(\frac{\lambda}{a}\right) ; a \neq 0 .
$$

(c) Find Fourier sine series of period 4 for the function

$$
f(x)= \begin{cases}2 x & ; 0<x<1 \\ 4-2 x & ; 1<x<2\end{cases}
$$

OR

Q-5
(a) Find the Fourier series of $f(x)=x^{2}$ in the interval $0<x<2$.
(b) Express $e^{-x} \cos x$ as a Fourier cosine integral and show that $e^{-x} \cos x=\frac{2}{\pi} \int_{0}^{\infty} \frac{\left(\lambda^{2}+2\right)}{\lambda^{4}+4} \cos \lambda x d \lambda$.
(c) If $F(\lambda)$ is Fourier transform of $f(x)$ then prove that

$$
\mathcal{F}[f(a x)]=\frac{1}{a} F\left(\frac{\lambda}{a}\right), a \neq 0 .
$$

Q-6

Attempt all questions

(a) Find Fourier integral representation of function $f(x)=\left\{\begin{array}{l}1 ;|x|<1 \\ 0 ;|x|>1\end{array}\right.$ and hence evaluate $\int_{0}^{\infty} \frac{\sin \lambda \cos \lambda x}{\lambda} d \lambda$.
(b) Find Fourier transform of $f(x)=e^{-a^{2} x^{2}} ; a>0$ and hence deduce that $F\left(e^{-\frac{x^{2}}{2}}\right)=e^{-\left(\frac{\lambda^{2}}{2}\right)}$.

OR

Q-6

Attempt all Questions

(a) Solve: $\frac{\partial y}{\partial t}=2\left(\frac{\partial^{2} y}{\partial x^{2}}\right)$, where $y(0, t)=y(5, t)=0$ and

$$
y(x, 0)=10 \sin 4 \pi x
$$

(b) Find Fourier cosine transform of $e^{-x^{2}}$.

