## C. U. SHAH UNIVERSITY

## **Summer Examination-2022**

Subject Name: Mathematical Methods - I

Subject Code: 5SC03MAM1 Branch: M.Sc. (Mathematics)

Semester: 3 Date: 22/04/2022 Time: 02:30 To 05:30 Marks: 70

## **Instructions:**

- (1) Use of Programmable calculator and any other electronic instrument is prohibited.
- (2) Instructions written on main answer book are strictly to be obeyed.
- (3) Draw neat diagrams and figures (if necessary) at right places.
- (4) Assume suitable data if needed.

## SECTION - I

Q-1 Attempt the Following questions (07)

(a) State first shifting theorem for Laplace transforms. 02

**(b)** Find 
$$L\left\{\frac{1}{\sqrt{\pi t}}\right\}$$
.

(c) Define: Direct delta function.

$$L^{-1}\left\{\frac{\bar{f}(s)}{s}\right\} = \underline{\qquad}.$$

$$Z(e^{an}) = \underline{\hspace{1cm}}.$$

Q-2 Attempt all questions (14)

(a) Prove that 
$$Z(\cosh n\theta) = \frac{z^2 + 2z \cosh \theta}{(z^2 - 2z \cosh \theta + 1)}$$
.

**(b)** If 
$$L\{f(t)\} = \overline{f}(s)$$
 then prove that  $L\{t^n f(t)\} = (-1)^n \frac{d^n}{dx^n} [\overline{f}(s)].$  05

(c) Find Laplace transform of the periodic function f(t) with period  $\frac{2\pi}{\omega}$ .

Where, 
$$f(t) = \begin{cases} \sin \omega t ; 0 < t < \frac{\pi}{\omega} \\ 0; \frac{\pi}{\omega} < t < \frac{2\pi}{\omega} \end{cases}$$

Q-2 Attempt all questions

(14)

(a) Find the Z transform and region of convergence of  $(4^n \text{ for } n < 0)$ 

$$u(n) = \begin{cases} 4^n & for \ n < 0 \\ 2^n & for \ n \ge 0 \end{cases}.$$

**(b)** Find 
$$Z^{-1}\left\{\frac{2(z^2-5z+6.5)}{(z-2)(z-3)^2}\right\}$$
,  $2 < |z| < 3$ .



|     | (c)        | Find $L\left\{\frac{1-\cos 2t}{t}\right\}$ .                                                                                                            | 04                  |
|-----|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|
| Q-3 |            | Attempt all questions                                                                                                                                   | (14)                |
|     | (a)        | Prove that $L\{\operatorname{erf}(\sqrt{x})\} = \frac{1}{s\sqrt{s+1}}$ .                                                                                | 05                  |
|     | <b>(b)</b> | If $f(t)$ is periodic function with period $T$ then prove that                                                                                          | 05                  |
|     |            | $L\{f(t)\} = \frac{1}{1 - e^{-sT}} \int_{0}^{1} e^{-st} f(t) dt.$                                                                                       |                     |
|     | (c)        | If $L^{-1}\left\{\frac{s}{(s^2+1)^2}\right\} = \frac{1}{2}t \sin t$ , then find $L^{-1}\left\{\frac{32s}{(16s^2+1)^2}\right\}$ .                        | 04                  |
|     |            | OR                                                                                                                                                      |                     |
| Q-3 | (a)        | Attempt the Following questions State and prove Convolution theorem for Laplace transform.                                                              | ( <b>14</b> ) 05    |
|     | <b>(b)</b> | Find $L\left\{\int_0^t \frac{e^{-t}\sin t}{t} dt\right\}$ .                                                                                             | 05                  |
|     | (c)        | If $\{u_n\}$ be any discrete sequence and $Z\{u_n\} = U(z)$ then prove that $(i)Z(a^{-n}u_n) = U(az)$ and $(ii)Z(a^nu_n) = U\left(\frac{z}{a}\right)$ . | 04                  |
|     |            | SECTION – II                                                                                                                                            |                     |
| Q-4 | (a)        | Attempt the Following questions Define: Z-transform                                                                                                     | ( <b>07</b> )<br>02 |
|     | <b>(b)</b> | Check whether the function $f(x) = \begin{cases} 0; -2 < x < -1 \\ k; -1 < x < 1 \text{ is even or } \\ 0; 1 < x < 2 \end{cases}$                       | 02                  |
|     | (a)        | odd?  If E(2) is Equation transforms of f(x) then prove that                                                                                            | 02                  |
|     | (c)        | If $F(\lambda)$ is Fourier transform of $f(x)$ then prove that                                                                                          | 02                  |
|     |            | $F\{f(x)\cos ax\} = \frac{1}{2}\{F(\lambda - a) + F(\lambda + a)\}$                                                                                     |                     |
|     | <b>(d)</b> | Define: Inverse Fourier transform.                                                                                                                      | 01                  |
| Q-5 |            | Attempt all questions                                                                                                                                   | (14)                |
|     | (a)        | State and prove Parseval's formula for Fourier series.                                                                                                  | 05                  |
|     | <b>(b)</b> | If $F(\lambda)$ is Fourier transform of $f(x)$ then prove that $1 - (\lambda)$                                                                          | 05                  |
|     |            | $F\{f(ax)\} = \frac{1}{a}F\left(\frac{\lambda}{a}\right); a \neq 0.$                                                                                    |                     |
|     | (c)        | Find Fourier sine series of period 4 for the function $f(x) = \begin{cases} 2x & \text{if } 0 < x < 1 \\ 4 - 2x & \text{if } 1 < x < 2 \end{cases}$     | 04                  |
|     |            | $f(x) = \{4 - 2x : 1 < x < 2\}$                                                                                                                         |                     |
|     |            | UK                                                                                                                                                      |                     |



| Q-5 |            | Attempt all questions                                                                                                                                                              | (14)        |
|-----|------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|
|     | (a)        | Find the Fourier series of $f(x) = x^2$ in the interval $0 < x < 2$ .                                                                                                              | 06          |
|     | <b>(b)</b> | Express $e^{-x} \cos x$ as a Fourier cosine integral and show that $e^{-x} \cos x = \frac{2}{\pi} \int_0^\infty \frac{(\lambda^2 + 2)}{\lambda^4 + 4} \cos \lambda x \ d\lambda$ . | 05          |
|     | (c)        | If $F(\lambda)$ is Fourier transform of $f(x)$ then prove that                                                                                                                     | 03          |
|     |            | $\mathcal{F}[f(ax)] = \frac{1}{a}F\left(\frac{\lambda}{a}\right), a \neq 0.$                                                                                                       |             |
| Q-6 |            | Attempt all questions                                                                                                                                                              | (14)        |
|     | (a)        | Find Fourier integral representation of function $f(x) = \{0 ;  x  > 1$                                                                                                            | 07          |
|     |            | and hence evaluate $\int_0^\infty \frac{\sin \lambda \cos \lambda x}{\lambda} d\lambda$ .                                                                                          |             |
|     | <b>(b)</b> | Find Fourier transform of $f(x) = e^{-a^2x^2}$ ; $a > 0$ and hence deduce                                                                                                          | 07          |
|     |            | that $F\left(e^{-\frac{x^2}{2}}\right) = e^{-\left(\frac{\lambda^2}{2}\right)}$ .                                                                                                  |             |
|     |            | OR                                                                                                                                                                                 |             |
| Q-6 |            | Attempt all Questions                                                                                                                                                              | <b>(14)</b> |
|     | (a)        | Solve: $\frac{\partial y}{\partial t} = 2\left(\frac{\partial^2 y}{\partial x^2}\right)$ , where $y(0,t) = y(5,t) = 0$ and                                                         | 09          |
|     |            | $y(x,0)=10\sin 4\pi x.$                                                                                                                                                            |             |
|     | <b>(b)</b> | Find Fourier cosine transform of $e^{-x^2}$ .                                                                                                                                      | 05          |

